
Fencing and Stonith

Dejan Muhamedagic, dejan@suse.de

v0.9

mailto:dejan@suse.de

Fencing is a very important concept in computer clusters for HA (High Availability).
Unfortunately, given that fencing does not offer a visible service to users, it is often
neglected.

Fencing may be defined as a method to bring an HA cluster to a known state. But,
what is a "cluster state" after all? To answer that question we have to see what is in the
cluster.

1 Introduction to HA clusters

Any computer cluster may be loosely defined as a collection of cooperating computers
or nodes. Nodes talk to each other over communication channels, which are typically
standard network connections, such as Ethernet.

The main purpose of an HA cluster is to manage user services. Typical examples of user
services are an Apache web server or, say, a MySQL database. From the user’s point
of view, the services do some specific and hopefully useful work when ordered to do so.
To the cluster, however, they are just things which may be started or stopped. This
distinction is important, because the nature of the service is irrelevant to the cluster. In
the cluster lingo, the user services are known as resources.

Every resource has a state attached, for instance: "resource r1 is started on node1". In
an HA cluster, such state implies that "resource r1 is stopped on all nodes but node1",
because an HA cluster must make sure that every resource may be started on at most
one node.

A collection of resource states and node states is the cluster state.

Every node must report every change that happens to resources. This may happen only
for the running resources, because a node should not start resources unless told so by
somebody. That somebody is the Cluster Resource Manager (CRM) in our case.

So far so good. But what if, for whatever reason, we cannot establish with certainty a
state of some node or resource? This is where fencing comes in. With fencing, even when
the cluster doesn’t know what is happening on some node, we can make sure that that
node doesn’t run any or certain important resources.

If you wonder how this can happen, there may be many risks involved with computing:
reckless people, power outages, natural disasters, rodents, thieves, software bugs, just to
name a few. We are sure that at least a few times your computer failed unpredictably.

2 Fencing

There are two kinds of fencing: resource level and node level.

Using the resource level fencing the cluster can make sure that a node cannot access one
or more resources. One typical example is a SAN, where a fencing operation changes
rules on a SAN switch to deny access from a node.

2

The resource level fencing may be achieved using normal resources on which the resource
we want to protect would depend. Such a resource would simply refuse to start on this
node and therefore resources which depend on it will be unrunnable on the same node
as well.

The node level fencing makes sure that a node does not run any resources at all. This
is usually done in a very simple, yet brutal way: the node is simply reset using a power
switch. This may ultimately be necessary because the node may not be responsive at all.

The node level fencing is our primary subject below.

3 Node level fencing devices

Before we get into the configuration details, you need to pick a fencing device for the
node level fencing. There are quite a few to choose from. If you want to see the list of
stonith devices which are supported just run:

stonith -L

Stonith devices may be classified into five categories:

• UPS (Uninterruptible Power Supply)

• PDU (Power Distribution Unit)

• Blade power control devices

• Lights-out devices

• Testing devices

The choice depends mainly on your budget and the kind of hardware. For instance, if
you’re running a cluster on a set of blades, then the power control device in the blade
enclosure is the only candidate for fencing. Of course, this device must be capable of
managing single blade computers.

The lights-out devices (IBM RSA, HP iLO, Dell DRAC) are becoming increasingly pop-
ular and in future they may even become standard equipment of of-the-shelf computers.
They are, however, inferior to UPS devices, because they share a power supply with their
host (a cluster node). If a node stays without power, the device supposed to control it
would be just as useless. Even though this is obvious to us, the cluster manager is not
in the know and will try to fence the node in vain. This will continue forever because all
other resource operations would wait for the fencing/stonith operation to succeed.

The testing devices are used exclusively for testing purposes. They are usually more
gentle on the hardware. Once the cluster goes into production, they must be replaced
with real fencing devices.

3

4 STONITH (Shoot The Other Node In The Head)

Stonith is our fencing implementation. It provides the node level fencing.

NB The stonith and fencing terms are often used interchangeably here as well as in
other texts.

The stonith subsystem consists of two components:

• stonithd

• stonith plugins

4.1 stonithd

stonithd is a daemon which may be accessed by the local processes or over the network. It
accepts commands which correspond to fencing operations: reset, power-off, and power-
on. It may also check the status of the fencing device.

stonithd runs on every node in the CRM HA cluster. The stonithd instance running on
the DC node receives a fencing request from the CRM. It is up to this and other stonithd
programs to carry out the desired fencing operation.

4.2 Stonith plugins

For every supported fencing device there is a stonith plugin which is capable of controlling
that device. A stonith plugin is the interface to the fencing device. All stonith plugins
look the same to stonithd, but are quite different on the other side reflecting the nature
of the fencing device.

Some plugins support more than one device. A typical example is ipmilan (or exter-
nal/ipmi) which implements the IPMI protocol and can control any device which sup-
ports this protocol.

5 CRM stonith configuration

The fencing configuration consists of one or more stonith resources.

A stonith resource is a resource of class stonith and it is configured just like any other
resource. The list of parameters (attributes) depend on and are specific to a stonith type.
Use the stonith(1) program to see the list:

$ stonith -t ibmhmc -n
ipaddr
$ stonith -t ipmilan -n
hostname ipaddr port auth priv login password reset_method

4

NB It is easy to guess the class of a fencing device from the set of attribute names.

A short help text is also available:

$ stonith -t ibmhmc -h
STONITH Device: ibmhmc - IBM Hardware Management Console (HMC)
Use for IBM i5, p5, pSeries and OpenPower systems managed by HMC

Optional parameter name managedsyspat is white-space delimited
list of patterns used to match managed system names; if last
character is ’*’, all names that begin with the pattern are matched

Optional parameter name password is password for hscroot if
passwordless ssh access to HMC has NOT been setup (to do so,
it is necessary to create a public/private key pair with
empty passphrase - see "Configure the OpenSSH client" in the
redbook for more details)
For more information see
http://publib-b.boulder.ibm.com/redbooks.nsf/RedbookAbstracts/SG247038.html

You just said that there is stonithd and stonith plugins.
What’s with these resources now?
Resources of class stonith are just a representation of stonith
plugins in the CIB. Well, a bit more: apart from the fencing
operations, the stonith resources, just like any other, may
be started and stopped and monitored. The start and stop
operations are a bit of a misnomer: enable and disable would
serve better, but it’s too late to change that. So, these two
are actually administrative operations and do not translate to
any operation on the fencing device itself. Monitor, however,
does translate to device status.

A dummy stonith resource configuration, which may be used in some testing scenarios
is very simple:

configure
primitive st-null stonith:null \

params hostlist="node1 node2"
clone fencing st-null
commit

5

NB
All configuration examples are in the crm configuration tool
syntax. To apply them, put the sample in a text file, say
sample.txt and run:

crm < sample.txt

The configure and commit lines are omitted from further ex-
amples.

An alternative configuration:

primitive st-node1 stonith:null \
params hostlist="node1"

primitive st-node2 stonith:null \
params hostlist="node2"

location l-st-node1 st-node1 -inf: node1
location l-st-node2 st-node2 -inf: node2

This configuration is perfectly alright as far as the cluster software is concerned. The
only difference to a real world configuration is that no fencing operation takes place.

A more realistic, but still only for testing, is the following external/ssh configuration:

primitive st-ssh stonith:external/ssh \
params hostlist="node1 node2"

clone fencing st-ssh

This one can also reset nodes. As you can see, this configuration is remarkably similar
to the first one which features the null stonith device.

What is this clone thing?
Clones are a CRM/Pacemaker feature. A clone is basically a
shortcut: instead of defining n identical, yet differently named
resources, a single cloned resource suffices. By far the most
common use of clones is with stonith resources if the stonith
device is accessible from all nodes.

The real device configuration is not much different, though some devices may require
more attributes. For instance, an IBM RSA lights-out device might be configured like
this:

primitive st-ibmrsa-1 stonith:external/ibmrsa-telnet \
params nodename=node1 ipaddr=192.168.0.101 \
userid=USERID passwd=PASSW0RD

primitive st-ibmrsa-2 stonith:external/ibmrsa-telnet \

6

params nodename=node2 ipaddr=192.168.0.102 \
userid=USERID passwd=PASSW0RD

st-ibmrsa-1 can run anywhere but on node1
location l-st-node1 st-ibmrsa-1 -inf: node1
st-ibmrsa-2 can run anywhere but on node2
location l-st-node2 st-ibmrsa-2 -inf: node2

Why those strange location constraints?
There is always certain probability that the stonith operation
is going to fail. Hence, a stonith operation on the node which
is the executioner too is not reliable. If the node is reset,
then it cannot send the notification about the fencing oper-
ation outcome. The only way to do that is to assume that
the operation is going to succeed and send the notification
beforehand. Then, if the operation fails, we are in trouble.
Given all this, we decided that, by convention, stonithd re-
fuses to kill its host.

If you haven’t already guessed, configuration of a UPS kind of fencing device is remarkably
similar to all we have already shown.

All UPS devices employ the same mechanics for fencing. What is, however, different is
how the device itself is accessed. Old UPS devices, those that were considered profes-
sional, used to have just a serial port, typically connected at 1200baud using a special
serial cable. Many new ones still come equipped with a serial port, but often they also
sport a USB interface or an Ethernet interface. The kind of connection we may make
use of depends on what the plugin supports. Let’s see a few examples for the APC UPS
equipment:

$ stonith -t apcmaster -h

STONITH Device: apcmaster - APC MasterSwitch (via telnet)
NOTE: The APC MasterSwitch accepts only one (telnet)
connection/session a time. When one session is active,
subsequent attempts to connect to the MasterSwitch will fail.
For more information see http://www.apc.com/
List of valid parameter names for apcmaster STONITH device:

ipaddr
login
password

$ stonith -t apcsmart -h

STONITH Device: apcsmart - APC Smart UPS

7

(via serial port - NOT USB!).
Works with higher-end APC UPSes, like
Back-UPS Pro, Smart-UPS, Matrix-UPS, etc.
(Smart-UPS may have to be >= Smart-UPS 700?).
See http://www.networkupstools.org/protocols/apcsmart.html
for protocol compatibility details.

For more information see http://www.apc.com/
List of valid parameter names for apcsmart STONITH device:

ttydev
hostlist

The former plugin supports APC UPS with a network port and telnet protocol. The
latter plugin uses the APC SMART protocol over the serial line which is supported by
many different APC UPS product lines.

So, what do I use: clones, constraints, both?
It depends. Depends on the nature of the fencing device. For
example, if the device cannot serve more than one connection
at the time, then clones won’t do. Depends on how many
hosts can the device manage. If it’s only one, and that is
always the case with lights-out devices, then again clones are
right out. Depends also on the number of nodes in your clus-
ter: the more nodes the more desirable to use clones. Finally,
it is also a matter of personal preference.
In short: if clones are safe to use with your configuration and
if they reduce the configuration, then make cloned stonith
resources.

The CRM configuration is left as an exercise to the reader.

6 Monitoring the fencing devices

Just like any other resource, the stonith class agents also support the monitor operation.
Given that we have often seen monitor either not configured or configured in a wrong
way, we have decided to devote a section to the matter.

Monitoring stonith resources, which is actually checking status of the corresponding
fencing devices, is strongly recommended. So strongly, that we should consider a config-
uration without it invalid.

On the one hand, though an indispensable part of an HA cluster, a fencing device, being
the last line of defense, is used seldom. Very seldom and preferably never. On the other,
for whatever reason, the power management equipment is known to be rather fragile on
the communication side. Some devices were known to give up if there was too much

8

broadcast traffic on the wire. Some cannot handle more than ten or so connections per
minute. Some get confused or depressed if two clients try to connect at the same time.
Most cannot handle more than one session at the time. The bottom line: try not to
exercise your fencing device too often. It may not like it. Use monitoring regularly, yet
sparingly, say once every couple of hours. The probability that within those few hours
there will be a need for a fencing operation and that the power switch would fail is usually
low.

7 Odd plugins

Apart from plugins which handle real devices, some stonith plugins are a bit out of line
and deserve special attention.

7.1 external/kdumpcheck

Sometimes, it may be important to get a kernel core dump. This plugin may be used to
check if the dump is in progress. If that is the case, then it will return true, as if the
node has been fenced, which is actually true given that it cannot run any resources at
the time. kdumpcheck is typically used in concert with another, real, fencing device. See
README_kdumpcheck.txt for more details.

7.2 external/sbd

This is a self-fencing device. It reacts to a so-called "poison pill" which may be inserted
into a shared disk. On shared storage connection loss, it also makes the node commit
suicide. See //www.linux-ha.org/SBD_Fencing for more details.

7.3 meatware

Strange name and a simple concept. meatware requires help from a human to operate.
Whenever invoked, meatware logs a CRIT severity message which should show up on the
node’s console. The operator should then make sure that the node is down and issue a
meatclient(8) command to tell meatware that it’s OK to tell the cluster that it may
consider the node dead. See README.meatware for more information.

7.4 null

This one is probably not of much importance to the general public. It is used in various
testing scenarios. null is an imaginary device which always behaves and always claims
that it has shot a node, but never does anything. Sort of a happy-go-lucky. Do not use
it unless you know what you are doing.

9

http://www.linux-ha.org/SBD_{}Fencing

7.5 suicide

suicide is a software-only device, which can reboot a node it is running on. It depends
on the operating system, so it should be avoided whenever possible. But it is OK on
one-node clusters. suicide and null are the only exceptions to the "don’t shoot my
host" rule.

What about that stonithd? You forgot about it, eh?
The stonithd daemon, though it is really the master of cer-
emony, requires no configuration itself. All configuration is
stored in the CIB.

8 Resources

//linux-ha.org/STONITH

//linux-ha.org/fencing

//linux-ha.org/ConfiguringStonithPlugins

//linux-ha.org/CIB/Idioms

//www.clusterlabs.org/mediawiki/images/f/fb/Configuration_Explained.pdf

//techthoughts.typepad.com/managing_computers/2007/10/split-brain-quo.html

10

http://linux-ha.org/STONITH
http://linux-ha.org/fencing
http://linux-ha.org/ConfiguringStonithPlugins
http://linux-ha.org/CIB/Idioms
http://www.clusterlabs.org/mediawiki/images/f/fb/Configuration_{}Explained.pdf
http://techthoughts.typepad.com/managing_{}computers/2007/10/split-brain-quo.html

	Introduction to HA clusters
	Fencing
	Node level fencing devices
	STONITH (Shoot The Other Node In The Head)
	stonithd
	Stonith plugins

	CRM stonith configuration
	Monitoring the fencing devices
	Odd plugins
	external/kdumpcheck
	external/sbd
	meatware
	null
	suicide

	Resources

